| Student: \quadInstructor: Joe Betters
 Course: Pre-Calculus Pre AP (Master
 Date: Assignment: Chapter 6 Review
 Course) |
| :--- | :--- | :--- |

1. Convert the angle to $D^{\circ} \mathrm{M}^{\prime} \mathrm{S}^{\prime \prime}$ form.
79.622°
$79.622^{\circ}=\quad$ - $"$ (Round to the nearest second.)

ID: 6.1.31
2. Convert the angle in radians to degrees.
$-\frac{7 \pi}{6}$
$-\frac{7 \pi}{6}=$ \qquad (Simplify your answer.)

ID: 6.1 .55
3. Find the central angle θ which subtends an arc of length 9 miles of a circle of radius 27 miles.
$\theta \approx$ \qquad radians
(Type an integer or decimal rounded to three decimal places as needed.)

ID: 6.1.75
4. A denotes the area of the sector of a circle of radius r formed by the central angle θ. Find the missing quantity.

$$
r=4 \text { inches, } \theta=150^{\circ}, A=?
$$

A = \qquad square inches
(Type an integer or decimal rounded to three decimal places as needed.)

ID: 6.1.85

5. The diameter of each wheel of a bicycle is 28 inches. If you are traveling at a speed of 35 miles per hour on this bicycle, through how many revolutions per minute are the wheels turning?
$\frac{\text { revolutions }}{\text { minute }}$
(Type an integer or decimal rounded to one decimal place as needed.)
ID: 6.1 .99
6. At a museum you can see the four cable lines that are used to pull cable cars up and down a hill. Each cable travels at a speed of 9.75 miles per hour, caused by a rotating wheel whose diameter is 5.5 feet. How fast is the wheel rotating? Express your answer in revolutions per minute.

The angular speed of the wheel is \qquad rev/min.
(Round to two decimal places as needed.)

ID: 6.1.111

7. Find the exact value. Do not use a calculator.

$$
\cos \left(-\frac{3 \pi}{2}\right)
$$

$\boldsymbol{\operatorname { c o s }}\left(-\frac{3 \pi}{2}\right)=\ldots$ (Type an exact answer, using radicals as needed.)
ID: 6.2.27
8. Find the exact values of the six trigonometric functions of the given angle. Do not use a calculator.
$-\frac{2 \pi}{3}$

Select the correct choice below and fill in any answer boxes within your choice.A. $\sin \left(-\frac{2 \pi}{3}\right)=$ \qquad
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)B. The function value is undefined.

Select the correct choice below and fill in any answer boxes within your choice.A. $\boldsymbol{\operatorname { c o s }}\left(-\frac{2 \pi}{3}\right)=$ \qquad
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)B. The function value is undefined.

Select the correct choice below and fill in any answer boxes within your choice.A. $\tan \left(-\frac{2 \pi}{3}\right)=$ \qquad
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)B. The function value is undefined.

Select the correct choice below and fill in any answer boxes within your choice.A. $\boldsymbol{\operatorname { c s c }}\left(-\frac{2 \pi}{3}\right)=$ \qquad
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)B. The function value is undefined.

Select the correct choice below and fill in any answer boxes within your choice.A.
$\sec \left(-\frac{2 \pi}{3}\right)=$ \qquad
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)B. The function value is undefined.

Select the correct choice below and fill in any answer boxes within your choice.A. $\cot \left(-\frac{2 \pi}{3}\right)=$ \qquad
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)B. The function value is undefined.

ID: 6.2.57

9. Use a calculator to find the approximate value of the expression. Round the answer to two decimal places.
$\sec 16^{\circ}$
$\boldsymbol{\operatorname { s e c }} 16^{\circ}=$ \qquad (Round to two decimal places as needed.)

ID: 6.2.67
10. Use a calculator to find the approximate value of the expression. Round the answer to two decimal places.
$\boldsymbol{\operatorname { s e c }} 1^{\circ}$
$\sec 1^{\circ}=$ \qquad (Round to two decimal places as needed.)

ID: 6.2.75
11. The point $P=(-6,6)$ on the circle $x^{2}+y^{2}=r^{2}$ is also on the terminal side of an angle θ in standard position. Find $\boldsymbol{\operatorname { s i n }} \theta, \boldsymbol{\operatorname { c o s }} \theta, \boldsymbol{\operatorname { t a n }} \theta, \boldsymbol{\operatorname { c s c }} \theta, \boldsymbol{\operatorname { s e c }} \theta$, and $\boldsymbol{\operatorname { c o t }} \theta$.

$\boldsymbol{\operatorname { s i n }} \theta=$
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
$\boldsymbol{\operatorname { c o s }} \theta=$
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
$\boldsymbol{\operatorname { t a n }} \theta=$
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
$\boldsymbol{\operatorname { c s c }} \theta=$
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
$\boldsymbol{\operatorname { s e c }} \theta=$
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
$\boldsymbol{\operatorname { c o t }} \theta=$
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)

ID: 6.2.81
12. Use the fact that the trigonometric functions are periodic to find the exact value of the given expression. Do not use a calculator.

```
\boldsymbol{tan}(390}\mp@subsup{}{}{\circ}
```

$\boldsymbol{\operatorname { t a n }}\left(390^{\circ}\right)=$ \qquad
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)

ID: 6.3.17

13. Name the quadrant in which the angle θ lies.
```
\boldsymbol{cos}}0<0,\quad\boldsymbol{\operatorname{cot}}0<
```

Choose the correct answer below.A. The angle θ does not exist.B. The angle θ lies in quadrant III.C. The angle θ lies in quadrant II.D. The angle θ lies in quadrant II or III.

ID: 6.3.31

14. Find the exact value of each of the remaining trigonometric functions of θ.
```
\boldsymbol{\operatorname{cec}}0=7,\quad\boldsymbol{\operatorname{tan}}0>0
```

$\boldsymbol{\operatorname { s i n }} \theta=$
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
$\boldsymbol{\operatorname { c o s }} \theta=$
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
$\boldsymbol{\operatorname { t a n }} \theta=$
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
$\boldsymbol{\operatorname { c o t }} \theta=$
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
$\boldsymbol{\operatorname { c s c }} \theta=$
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)

ID: 6.3.53
15. Use the even-odd properties to find the exact value of the given expression. Do not use a calculator.
$\boldsymbol{\operatorname { c o s }}\left(-180^{\circ}\right)$
$\boldsymbol{\operatorname { c o s }}\left(-180^{\circ}\right)=$ \qquad
(Type an exact answer, using radicals as needed. Simplify your answer, including any radicals.)

ID: 6.3.65
16. Use properties of the trigonometric functions to find the exact value of the expression. Do not use a calculator.

```
\boldsymbol{\operatorname{sin}}5\mp@subsup{5}{}{\circ}\cdot\boldsymbol{\operatorname{csc}}5\mp@subsup{5}{}{\circ}
```

$\sin 55^{\circ} \cdot \csc 55^{\circ}=$ \qquad

ID: 6.3.79
17. What is the range of the tangent function?

Choose the correct answer below.A. All real numbers greater than or equal to 0B. All real numbers from -1 to 1 , inclusiveC. All real numbersD. All real numbers greater than or equal to 1 or less than or equal to -1

ID: 6.3.103
18. Determine the amplitude and period of the following function without graphing.

$$
y=4 \cos (\pi x)
$$

For the function given, the amplitude is (Simplify your answer. Use integers or fractions for any numbers in the expression.)

For the function given, $\omega=$ \qquad , so that the period $=T=$ \qquad .
(Simplify your answer. Use integers or fractions for any numbers in the expression.)

ID: 6.4.15
19. Match the given function to one of the graphs.

$$
y=-4 \cos \left(\frac{1}{4} x\right)
$$

Select the correct graph.A.B.
C.
○
D.

ID: 6.4.27
20. Match the function $\mathrm{y}=-6 \boldsymbol{\operatorname { s i n }}(8 \mathrm{x})$ to the correct graph.

Choose the correct graph of the given function below.A.
B.
C.
D.

ID: 6.4.33
21. Find an equation for the graph.

Which is an equation for the graph?A. $y=\frac{5}{8} \sin (\pi x)$
B.
$y=\boldsymbol{\operatorname { s i n }}\left(\frac{5 \pi}{8} x\right)$C. $y=\pi \cos \left(\frac{5}{8} x\right)$
D.
$y=\frac{5}{8} \boldsymbol{\operatorname { c o s }}(\pi x)$
E.
$y=\pi \boldsymbol{\operatorname { s i n }}\left(\frac{5}{8} x\right)$F. $y=\cos \left(\frac{5 \pi}{8} x\right)$

ID: 6.4.67
22. Graph the following function.
$f(x)= \begin{cases}\cos x & 0 \leq x<\frac{5 \pi}{4} \\ \boldsymbol{\operatorname { s i n }} x & \frac{5 \pi}{4} \leq x \leq 2 \pi\end{cases}$
Choose the correct graph below.
A.B.
D.

ID: 6.4.85
23. The voltage V produced by an ac generator is $\mathrm{V}=260 \boldsymbol{\operatorname { s i n }}$ (140 tt). Use this information to answer the questions below.
(a) What is the amplitude of the voltage V ?

The amplitude of the voltage is \qquad .

What is the period of the voltage V ?
$\mathrm{T}=$ \qquad (Type an integer or a simplified fraction.)
(b) Which of the following shows a graph of the voltage V over two periods, beginning at $\mathrm{t}=0$?
$\bigcirc \mathrm{A}$
A.

B.
C.D.

(c) If a resistance $\mathrm{R}=80$ ohms is present, what is the current I? [Hint: Use Ohm's Law, $\mathrm{V}=\mathrm{IR}$.]

I= $\boldsymbol{\operatorname { s i n }}(140 \pi t)$
(Round to the nearest tenth as needed.)
(d) What is the amplitude of the current I?

The amplitude of the current is \qquad .
(Round to the nearest tenth as needed.)
What is the period of the current I?
$T=$ \qquad (Type an integer or a simplified fraction.)
(e) Which of the following shows a graph of the current I over two periods, beginning at $\mathrm{t}=0$?
$\bigcirc \mathrm{A}$
B.

C.D.

ID: 6.4.89
24. For what numbers $\mathrm{x},-2 \pi \leq \mathrm{x} \leq 2 \pi$, does the graph of $\mathrm{y}=\boldsymbol{\operatorname { t a n }} \mathrm{x}$ have vertical asymptotes?

Refer to the graph, which shows $\mathrm{y}=\boldsymbol{\operatorname { t a n }} \mathrm{x}$ in blue and $\mathrm{y}=\boldsymbol{\operatorname { c o s }} \mathrm{x}$ in red.

In the interval $-2 \pi \leq x \leq 2 \pi$, what is the smallest value of x for which the graph of $y=\boldsymbol{\operatorname { t a n }} x$ has a vertical asymptote?

(Type an exact answer, using π as needed. Use integers or fractions for any numbers in the expression. Simplify your answer.)

Within the given interval, what is the next x -value for which $\mathrm{y}=\boldsymbol{\operatorname { t a n }} \mathrm{x}$ has a vertical asymptote?
(Type an exact answer, using π as needed. Use integers or fractions for any numbers in the expression. Simplify your answer.)

At what other x-values in the interval $-2 \pi \leq x \leq 2 \pi$ does the graph of $y=\boldsymbol{\operatorname { t a n }} \mathrm{x}$ have a vertical asymptote?
$\frac{\pi}{2}$, and $\frac{3 \pi}{2}$$\frac{\pi}{2}, \frac{3 \pi}{2}$, and $\frac{5 \pi}{2}$
There are no others.

- $\frac{3 \pi}{2}$ and $\frac{5 \pi}{2}$

ID: 6.5.15
25. Graph the following function. Show at least two cycles. Use the graph to determine the domain and range of the function.

$$
y=\cot \left(\frac{1}{4} x\right)-5
$$

Choose the correct graph below.

A
A.

B
B.C.

D.

Use the graph to determine the domain of $\mathrm{y}=\boldsymbol{\operatorname { c o t }}\left(\frac{1}{4} \mathrm{x}\right)-5$.A. All real numbersB. $\{x \mid x \neq 4 k \pi, k$ is an integer $\}$C. $\{x \mid x \neq k \pi, k$ is an integer $\}$D. $\left\{x \left\lvert\, x \neq \frac{k}{4}\right., k\right.$ is an odd integer $\}$

Use the graph to determine the range of $y=\boldsymbol{\operatorname { c o t }}\left(\frac{1}{4} x\right)-5$.A. $\{y \mid y \leq 20\}$B. All real numbersC. $\{y \mid y \geq 20\}$D. $\{y \mid y \geq-20$ and $y \leq 20\}$

ID: 6.5.33
26. Graph the following function. Show at least two cycles. Use the graph to determine the domain and range of the function.

$$
y=\boldsymbol{\operatorname { c s c }}\left(\frac{2 \pi}{7} x\right)-1
$$

Choose the correct graph below.
A.

B.

c.

D.

Use the graph to determine the domain of $y=\boldsymbol{\operatorname { c s c }}\left(\frac{2 \pi}{7} \mathrm{x}\right)-1$.A. $\left\{x \left\lvert\, x \neq \frac{k}{4}\right., k\right.$ is an odd integer $\}$B. $\left\{x \left\lvert\, x \neq \frac{7}{2} k\right., k\right.$ is an integer $\}$C. All real numbersD. $\{x \mid x \neq k \pi, k$ is an integer $\}$

Use the graph to determine the range of $y=\boldsymbol{\operatorname { c s c }}\left(\frac{2 \pi}{7} x\right)-1$.A. $\{y \mid y \leq-2$ or $y \geq 0\}$B. $\{y \mid y \geq 0\}$C. All real numbersD. $\{y \mid y \leq-2\}$

ID: 6.5.35
27. Find the amplitude, period, and phase shift of the function. Graph the function. Be sure to label key points. Show at least two periods.

$$
y=-3 \sin \left(6 x+\frac{\pi}{2}\right)
$$

What is the amplitude?
(Simplify your answer. Type an exact answer, using π as needed. Use integers or fractions for any numbers in the expression.)

What is the period?
(Simplify your answer. Type an exact answer, using π as needed. Use integers or fractions for any numbers in the expression.)

What is the phase shift?
$\overline{\text { (Simplify your answer. Type an exact answer, using } \pi \text { as needed. Use integers or fractions for any numbers in the }}$ expression.)

Choose the correct graph below.
A.

B.
C.D.

ID: 6.6.7
28. Write the equation of a sine function that has the following characteristics.

Amplitude: 2 Period: 2π Phase shift: $-\frac{1}{6}$
Type the appropriate values to complete the sine function.
$y=$
$\sin ($
x+ \qquad)
(Use integers or fractions for any numbers in the expression. Simplify your answers.)

ID: 6.6.17
29. Graph the function.

$$
y=-3 \cot \left(4 x+\frac{\pi}{2}\right)
$$

Choose the correct graph of $\mathrm{y}=-3 \cot \left(4 \mathrm{x}+\frac{\pi}{2}\right)$.A.

B.

c.

D.

30. The following data represent the average monthly temperatures (in ${ }^{\circ} \mathrm{F}$) for a city in Alaska.

January, 1	25.0	April, 4	40.5	July, 7	56.4	October, 10	43.0
February, 2	28.8	May, 5	47.4	August, 8	55.4	November, 11	32.4
March, 3	33.1	June, 6	53.8	September, 9	50.2	December, 12	27.9

Answer the following questions.
(a) Use a graphing utility to draw a scatter diagram for the data of one period.

Which screen is correct? (All screens are $[0,13]$ by $[0,60]$.)
A
A.
B
в.
c.
D.

(b) By hand, find a sinusoidal function of the form $y=A \boldsymbol{\operatorname { s i n }}(\omega x-\phi)+B$ that fits the data.
$\mathrm{A}=$ \qquad
$\omega=$ \qquad
(Simplify your answer. Type an exact answer in terms of π. Use integers or fractions for any numbers in the expression.)
$\phi=$ \qquad
(Simplify your answer. Type an exact answer in terms of π. Use integers or fractions for any numbers in the expression.)
$B=$ \qquad
(c) Draw the sinusoidal function found in part (b) on the scatter diagram.

Which screen is correct? (All screens are $[0,13]$ by $[0,60]$.)
$\bigcirc \mathbf{A}$
A.
B.
C.
○

(d) Use a graphing utility to find the sinusoidal function of best fit.

$$
y=15.57 \sin (\quad x-\quad)+41.03
$$

(Round to two decimal places as needed.)
(e) Draw the sinusoidal function of best fit on the scatter diagram.

Which screen is correct? (All screens are $[0,13]$ by $[0,60]$.)A.
B.
C.
D

ID: 6.6.31

1. 79
2. -210
3. 0.333
4. 20.944

5. 420.2

6. 49.66
7. 0
8. A. $\sin \left(-\frac{2 \pi}{3}\right)=-\frac{\sqrt{3}}{2}$
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
A. $\cos \left(-\frac{2 \pi}{3}\right)=-\frac{1}{2}$
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
A. $\tan \left(-\frac{2 \pi}{3}\right)=$ \qquad
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
A. $\csc \left(-\frac{2 \pi}{3}\right)=-\frac{2 \sqrt{3}}{3}$
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
A. $\sec \left(-\frac{2 \pi}{3}\right)=-2$
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
A. $\cot \left(-\frac{2 \pi}{3}\right)=\frac{\sqrt{3}}{3}$
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
9. 1.04
10. 1.00
11. $\frac{\sqrt{2}}{2}$
$-\frac{\sqrt{2}}{2}$
-1
$\sqrt{2}$
$-\sqrt{2}$
-1
12. $\frac{\sqrt{3}}{3}$
13. C. The angle θ lies in quadrant II.
14. $\frac{4 \sqrt{3}}{7}$
$\frac{1}{7}$
$4 \sqrt{3}$
$\frac{\sqrt{3}}{12}$
$\frac{7 \sqrt{3}}{12}$
15. -1
16. 1
17. C. All real numbers
18. 4
π
2
19.

C.
20.
C. -6
21. A. $y=\frac{5}{8} \sin (\pi x)$
22.

D.
23. 260
$\frac{1}{70}$

C.
3.3
3.3
$\frac{1}{70}$

B.
24. $-\frac{3 \pi}{2}$
$-\frac{\pi}{2}$
$\frac{\pi}{2}$, and $\frac{3 \pi}{2}$
25.

B.
B. $\{x \mid x \neq 4 k \pi, k$ is an integer $\}$
B. All real numbers
26.

B.
B. $\left\{x \left\lvert\, x \neq \frac{7}{2} k\right., k\right.$ is an integer $\}$
A. $\{y \mid y \leq-2$ or $y \geq 0\}$
27. 3
$\frac{\pi}{3}$
$-\frac{\pi}{12}$

D.
28. 2

1
$\frac{1}{6}$
29.

30.
D.

15.7
π
$\frac{\pi}{6}$
$\frac{2 \pi}{3}$
40.7
C.

0.52
2.11
D.

