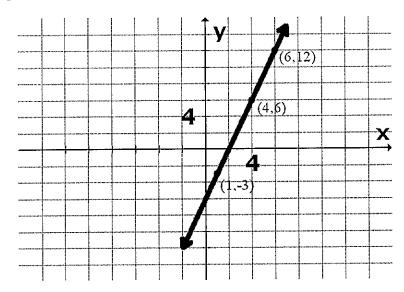
Linear Functions and Their Properties

Learning Objectives:

- 1. Graph Linear Functions (p. 130)
- 2. Use Average Rate of Change to Identify Linear Functions (p. 130)
- 3. Determine Whether a Linear function Is Increasing, Decreasing, or Constant (p. 133)
- 4. Build Linear Models from Verbal Descriptions (p. 134)

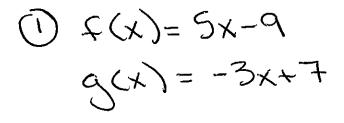
Examples:

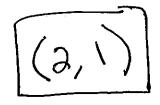
- 1. Suppose that f(x) = 5x 9 and g(x) = -3x + 7. Solve f(x) = g(x). Then graph y = f(x) and y = g(x) and label the point that represents the solution to the equation f(x) = g(x).
- 2. In parts (a) and (b) using the following figure,

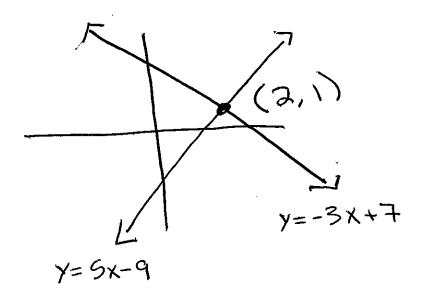


- (a) Solve f(x) = 12.
- (b) Solve 0 < f(x) < 12.
- 3. The monthly cost C, in dollars, for renting a full-size car for a day from a particular agency is modeled by the function C(x) = 0.12x + 40, where x is the number of miles driven. Suppose that your budget for renting a car is \$100. What is the maximum number of miles that you can drive in one day?
- 4. Find a firm's break-even point if R(x) = 10x and C(x) = 7x + 6000. (Before working this problem, go over the explanation above Problems 43 and 44 on page 290.)

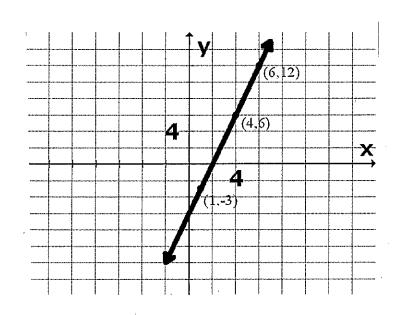
3.1 mini Lecture







(3) Solve f(x)=13 [x=6] (6,12) Solve 0< f(x)<12 [2< x<6]



3.1 mini lecture continued

$$(4)$$
 $R(x) = 10x$
 $C(x) = 7x + 6000$

*Break even *

Linear Models: Building Linear Models from Data

Learning Objectives:

1. Draw and Interpret Scatter Diagrams (p. 140)

2. Distinguish between Linear and Nonlinear Relations (p. 141)

3. Use a Graphing Utility to Find the Line of Best Fit (p. 142)

Examples:

х	3	7	8	9	11	15
у	2	4	7	8	6	10

- 1. Draw a scatter diagram. Select two points from the scatter diagram and find the equation of the line containing the two points.
- 2. Use a graphing utility to find the equation for line of best fit for problem 1.

The marketing manager for a toy company wishes to find a function that relates the demand D for a doll and p the price of the doll. The following data were obtained based on a price history of the doll. The Demand is given in thousands of dolls sold per day.

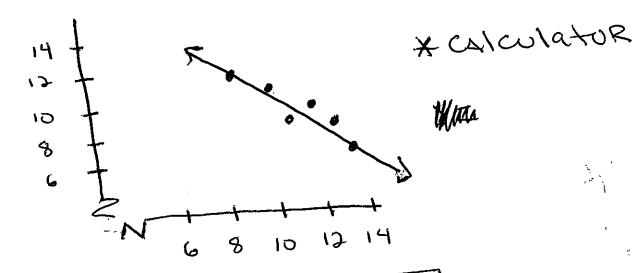
Price	9.00	10.50	11.00	12.00	12.50	13
Demand	12	11	9	10	9.5	8

- 3. Use a graphing utility to draw a scatter diagram. Then, find and draw the line of best fit.
- 4. How many dolls will be demanded if the price is \$11.50?

$$M = \frac{4-3}{7-3} = \frac{1}{3}$$

$$W = \frac{x^3 - x^1}{\lambda^3 - \lambda^1}$$

3.2 min: lecture continued



$$9$$
 If price = \$11.50
 $y = -.838(11.5) + 19.419$
 89.78

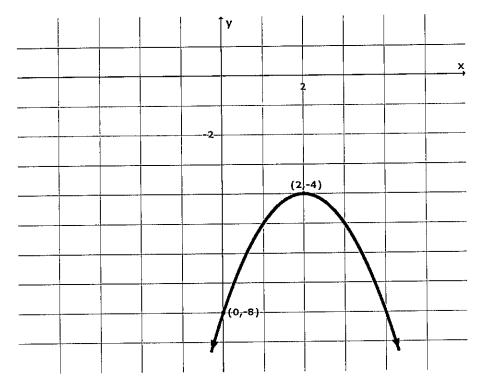
Ouadratic Functions and Their Properties

Learning Objectives:

- 1. Graph a Quadratic Function Using Transformations (p. 148)
- 2. Identify the Vertex and Axis of Symmetry of a Quadratic Function (p. 150)
- 3. Graph a Quadratic Function Using Its Vertex, Axis, and Intercepts (p. 150)
- 4. Find a Quadratic Function Given Its Vertex and One Other Point (p. 153)
- 5. Find the Maximum and Minimum Value of a Quadratic Function (p. 154)

Examples:

- 1. Find the coordinates of the vertex for the parabola defined by the given quadratic function. $f(x) = -3x^2 + 5x 4$
- 2. Sketch the graph of the quadratic function by determining whether it opens up or down and by finding its vertex, axis of symmetry, y-intercepts, and x-intercepts, if any. $f(x) = 6 5x + x^2$
- 3. For the quadratic function, $f(x) = 4x^2 8x$,
 - a) determine, without graphing, whether the function has a minimum value or a maximum value,
 - b) find the minimum or maximum value.
- 4. Determine the quadratic function whose graph is given.



3.3 mini lecture

①
$$f(x) = ax^{2} + bx + C$$

$$f(x) = -3x^{2} + 5x - 4$$

$$x = -\frac{b}{2a} = \frac{-5}{3(-3)} = \frac{5}{6}$$

$$x = -\frac{5}{2} = \frac{5}{6}$$

$$x = -\frac{5}{2} = \frac{5}{6}$$

$$x = -\frac{33}{12}$$

$$x = \frac{5}{12}$$

$$x = \frac{5$$

3.3 mini lecture continued

a is positive, opens up, kninimum/

$$X = -\frac{b}{2a} = \frac{-(-8)}{2(4)} = 1$$

minimm value is [4]

3.3 mini lecture continued

(3,-4) vertex
$$h = -\frac{b}{2a}$$

$$(3,-4) \times K = 4ac - b^2$$

$$4a$$

$$h = -\frac{b}{2a}$$

$$K = \frac{4ac - b^2}{4a}$$

$$(t(x) = \alpha(x-y) + k$$

 $t(x) = \alpha x^{2} + px + c$

$$-8 = -a(0-3)^{2} - 4$$

$$\frac{2(x) = -(x-3)^{-4}}{2(x)^{2}}$$

Building Quadratic Models from Verbal Descriptions and from Data

Learning Objectives:

- 1. Build Quadratic Models from Verbal Descriptions (p. 159)
- 2. Build Quadratic Models from Data (p. 163)

Examples:

- 1. Among all pairs of numbers whose sum is 50, find a pair whose product is as large as possible. What is the maximum product?
- 2. A person standing close to the edge of the top of a 180-foot tower throws a ball vertically upward. The quadratic function $s(t) = -16t^2 + 64t + 180$ models the ball's height above ground, s(t), in feet, t seconds after it was thrown. After how many seconds does the ball reach its maximum height? What is the maximum height?
- 3. The price p (in dollars) and the quantity x sold of a certain product obey the demand equation $p = -\frac{1}{4}x + 120$. Find the model that expresses the revenue R as a function of x. What quantity x maximizes revenue? What is the maximum revenue?
- 4. The following data represent the percentage of the population in a certain country aged 40 or older whose age is x who do not have a college degree of some type.

Age x	40	45	50	55	60	65
No college	25.4	23.2	21.8	24.5	26.1	29.8
110000000						

Find a quadratic model that describes the relationship between age and percentage of the population that do not have a college degree. Use the model to predict the percentage of 53-year-olds that do not have a college degree.

$$\bigvee_{\mathsf{X}}$$

$$*X = -\frac{b}{2a} = -\frac{50}{2(-1)} = 3$$

$$\times$$
 vertex $X = -\frac{b}{2a} = -\frac{64}{2616} = 2 \sec$

3.4 mini lecture continued

3)
$$b = -\frac{1}{7}x + 130$$

 $B(x) = -\frac{1}{7}x^{2} + 130x$
 $B(x) = x(-\frac{1}{7}x + 130)$

$$* X = \frac{-b}{2a} = \frac{-120}{2(-1/4)} = [240 \text{ units}]$$

* Wlwlator

$$y=.0296(53)^{2}-2.9216(53)+94.655$$

= $\left[23.1\%\right]$

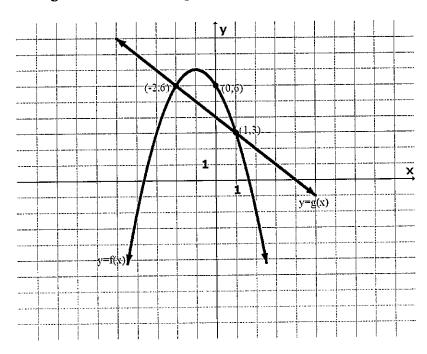
Inequalities Involving Quadratic Functions

Learning Objectives:

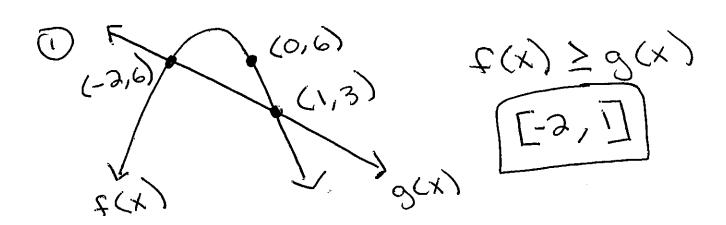
1. Solve Inequalities Involving a Quadratic Function (p. 169)

Examples:

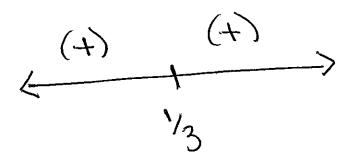
1. Use the figure to solve the inequality $f(x) \ge g(x)$.



- 2. Solve and express the solution in interval notation. $9x^2 6x + 1 < 0$
- 3. Solve the inequality. x(x+2) > 15
- 4. Solve f(x) > g(x). $f(x) = -x^2 + 2x + 3$; $g(x) = -x^2 2x + 8$



(3) $9x^{3}-6x+1 < 0$ (3x-1)(3x-1) < 0Critical points $x=\frac{1}{3}$



no value is less than 0 (-) so million no solution exists * pick any
value to
the left
of 13 and
to the right
of 13. Check
to see if the
value is
(+) or (-)

3.5 mini lecture continued

(3)
$$x(x+2) > 15$$

 $x^2 + 2x - 15 > 0$
 $(x + 5)(x - 3) > 0$
Critical points $x = -5, 3$

$$(4) \qquad (4)$$

-5 3

Since >0 is looking for (+) number

$$(-\infty, -5) \cup (3, \infty)$$

mini lecture 3.5 continues

$$g(x) = -x^{2} - 2x + 3$$

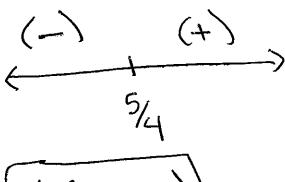
$$g(x) = -x^{2} - 2x + 8$$

t(x) > 0(x)

-x3+2x+3>-x3-2x+8

4x-5>0

Critical point X= 5/4



(5/4,00)