Mini-Lecture 3.1

Linear Functions and Their Properties

Learning Objectives:

1. Graph Linear Functions (p. 130)

2. Use Average Rate of Change to Identify Linear Functions (p. 130)

3. Determine Whether a Linear function Is Increasing, Decreasing, or Constant (p. 133)
4. Build Linear Models from Verbal Descriptions (p. 134)

Examples:

1. Suppose that f(x)=5x—9 and g(x)=-3x+7. Solve f(x)=g(x). Then graph
y= f(x) and y = g(x) and label the point that represents the solution to the equation

f(x)=g(x).

2. In parts (a) and (b) using the following figure,
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(a) Solve f(x)=12. (b) Solve 0< f(x)<12.

3. The monthly cost C, in dollars, for renting a full-size car for a day from a particular
agency is modeled by the function C(x)=0.12x+40, where x is the number of miles

driven. Suppose that your budget for renting a car is $100. What is the maximum
number of miles that you can drive in one day?

4. Find a firm’s break-even point if R(x)=10x and C(x) =7x+6000. (Before

working this problem, go over the explanation above Problems 43 and 44 on page
290.)
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Mini-Lecture 3.2
Linear Models: Building Linear Models from Data

Learning Objectives:

1. Draw and Interpret Scatter Diagrams (p. 140)
2. Distinguish between Linear and Nonlinear Relations (p. 141)
3. Use a Graphing Utility to Find the Line of Best Fit (p. 142)

Examples:

x 13 17 |8 |9 [11 |15
v |2 |4 |7 |8 |6 |10

1. Draw a scatter diagram. Select two points from the scatter diagram and find the
equation of the line containing the two points.

2. Use a graphing utility to find the equation for line of best fit for problem 1.
The marketing manager for a toy company wishes to find a function that relates the

demand D for a doll and p the price of the doll. The following data were obtained based
on a price history of the doll. The Demand is given in thousands of dolls sold per day.

Price 9.00 |10.50 | 11.00 | 12.00 | 12.50 | 13

Demand | 12 11 9 10 9.5

3. Use a graphing utility to draw a scatter diagram. Then, find and draw the line of best
fit.

4. How many dolls will be demanded if the price is $11.507
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Mini-Lecture 3.3
Quadratic Functions and Their Properties

Learning Objectives:

LU T G U T N

Graph a Quadratic Function Using Transformations (p. 148)

Identify the Vertex and Axis of Symmetry of a Quadratic Function (p. 150)
Graph a Quadratic Function Using Its Vertex, Axis, and Intercepts (p. 150)
Find a Quadratic Function Given Its Vertex and One Other Point (p. 153)
Find the Maximum and Minimum Value of a Quadratic Function (p. 154)

Examples:

I.

Find the coordinates of the vertex for the parabola defined by the given quadratic
function.  f(x)=-3x" +5x—4

Sketch the graph of the quadratic function by determining whether it opens up or
down and by finding its vertex, axis of symmetry, y-intercepts, and x-Intercepts,

ifany. f(x)=6-5x+x
For the quadratic function, f(x)=4x* —8x,
a) determine, without graphing, whether the function has a minimum value or
a maximum value,

b) find the minimum or maximum value.

Determine the quadratic function whose graph is given.
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Mini-Lecture 3.4
Building Quadratic Models from Verbal Descriptions and from Data

Learning Objectives:

1. Build Quadratic Models from Verbal Descriptions (p. 159)
2. Build Quadratic Models from Data (p. 163)

Examples:

1. Among all pairs of numbers whose sum is 50, find a pair whose product is as large as
possible. What is the maximum product?

2. A person standing close to the edge of the top of a 180-foot tower throws a ball
vertically upward. The quadratic function s(¢) = —161% + 64¢ +180 models the ball’s
height above ground , s(¢), in feet, ¢ seconds after it was thrown. After how many
seconds does the ball reach its maximum height? What is the maximum height?

3. The price p (in dollars) and the quantity x sold of a certain product obey the demand

equation p = _%XHZO . Find the model that expresses the revenue R as a function

of x. What quantity x maximizes revenue? What is the maximum revenue?

4. The following data represent the percentage of the population in a certain country
aged 40 or older whose age is x who do not have a college degree of some type.

Age, x 40 45 50 55 60 65

No college | 25.4 23.2 21.8 24.5 26.1 29.8

Find a quadratic model that describes the relationship between age and percentage of
the population that do not have a college degree. Use the model to predict the
percentage of 53-year-olds that do not have a college degree.
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Mini-Lecture 3.5

Inequalities Involving Quadratic Functions

Learning Objectives:

1. Solve Inequalities Involving a Quadratic Function (p. 169)

Examples:

1. Use the figure to solve the inequality f(x)= g(x).
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2. Solve and express the solution in interval notation. 9x* —6x+1<0

3. Solve the inequality. x(x+2)>15

4. Solve f(x)>g(x). f(x)=—x"+2x+3; g(x)=—x"~2x+8



No So\udvion
LRSS

M \er
o(; M 2 cu-——‘b

Ao Mea (‘Tc\})\l\‘\r
o+ \/'5 L Gl

Va\we, 7S

() o2 ()



\%06 mlr\i_'-\_.e:c,%ur& @(\X-Br\uab

Lo

(% 5\(x =3 >0

CINGN QOIS X=-9, [

(3D (—) )

. 3

Groce. PO 15 \ookiney Coe () auroec

[Cor, -y (5,




Miat \echure 3.5 o e O

.~
@ SO = - X v
%Qi\ = R 2 XD

LX) ¥ 0§

/\/\—/\/\/\—/_\
"o~ |

AN-9 70O
CoiNieaN QOiny A= "5/u\

(— \‘ () |

‘j/L\

(C’/L«,w\




