
10.2 min: lecture

$$\begin{array}{c}
(y-2)^2 = 4(x+2) & y^2 = 4ax \\
(-1,3) & 4a = 4 \\
(-1,3) & 4a = 4
\end{array}$$

$$\begin{array}{c}
x = -3
\end{array}$$

Scanned by CamScanner

10.2 min: lecture

$$(0,-8)$$

$$Q=-8$$

$$(X-0)^{2}=4(-8)(Y-0)$$

$$\begin{array}{c} X^2 = -32y \\ \hline y = -\frac{X^2}{32} \end{array}$$


10.2 min: Lecture 3 x2+2x+8y+1=0 Xx+7x+1 = -81 (x+1)2=-8y vertex (-1,0 4a=-8 a=-2

Scanned by CamScanner

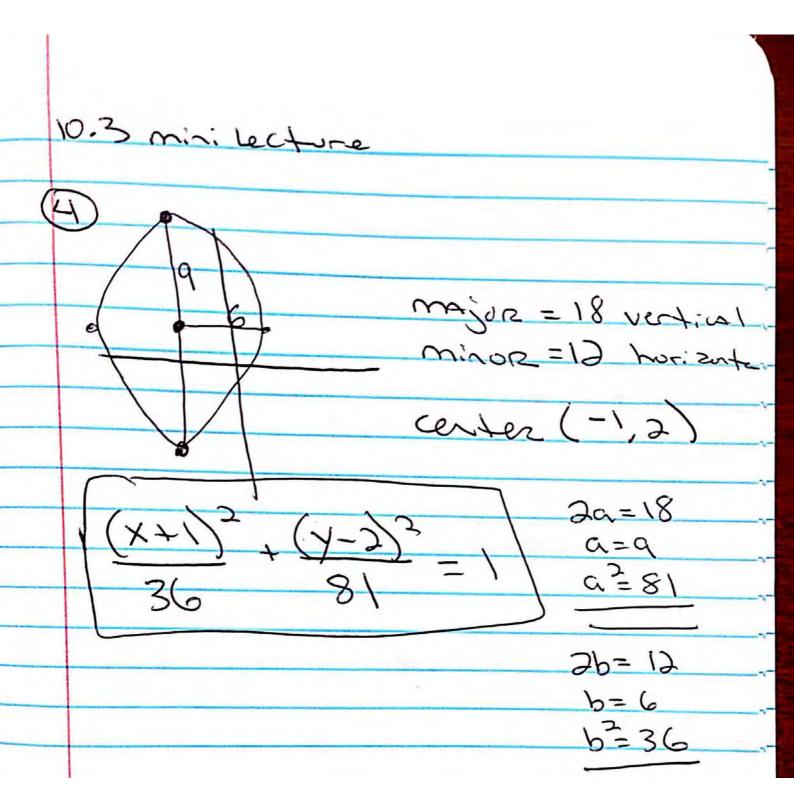
10.2 min: Lecture

$$(y+4)^2 = 4(-3)(x-3)$$

 $(y+4)^2 = -12(x-3)$

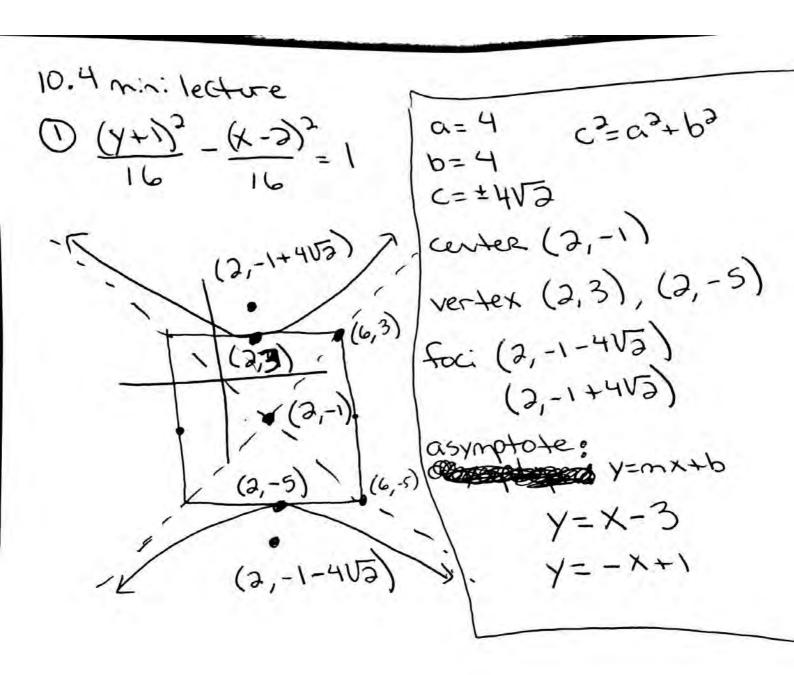
$$(x+3)^{2} + (y-2)^{2} = 1$$

major = 10 minur = 4 Center (-3,2)


$$9x^{2}-36x+4y^{2}+32y=-64$$

 $9(x^{2}-4x+4)+4(y^{2}+8y+16)=+36+64$

$$\frac{4}{(x-3)_3} + \frac{4}{(\lambda+4)_3} = 1$$


Scanned by Cam\$canner

3) foc: (0,3), (0,-3) Xintercepts (-3 and 3) b= a2-c2

Scanned by CamScanner

Scanned by CamScanner

$$\frac{10.4 \text{ m.n.} \text{ lecture}}{20}$$

$$\frac{35 \times^{3} - 4 \times^{2} - 33 \times^{2} - 164 = 0}{35 \times^{3} - 4 \times^{2} + 8 \times}$$

$$\frac{35 \times^{3} - 4 \times^{2} + 8 \times^{2} + 16}{35 \times^{3} - 4 \times^{2} + 8 \times^{2} + 16} = 164 + (-64)$$

$$\frac{35 \times^{3} - 4 \times^{2} + 8 \times^{2} + 16}{4 \times^{3} + 16} = 1$$

$$\frac{35 \times^{3} - 4 \times^{3} + 8 \times^{3} + 16}{4 \times^{3} + 16} = 1$$

$$\frac{35 \times^{3} - 4 \times^{3} + 8 \times^{3} + 16}{4 \times^{3} + 16} = 1$$

$$\frac{35 \times^{3} - 4 \times^{3} + 8 \times^{3} + 16}{4 \times^{3} + 16} = 1$$

$$\frac{35 \times^{3} - 4 \times^{3} + 8 \times^{3} + 16}{4 \times^{3} + 16} = 1$$

$$\frac{35 \times^{3} - 4 \times^{3} + 8 \times^{3} + 16}{4 \times^{3} + 16} = 1$$

$$\frac{35 \times^{3} - 4 \times^{3} + 8 \times^{3} + 16}{4 \times^{3} + 16} = 1$$

$$\frac{35 \times^{3} - 4 \times^{3} + 8 \times^{3} + 16}{4 \times^{3} + 16} = 1$$

$$\frac{35 \times^{3} - 4 \times^{3} + 8 \times^{3} + 16}{4 \times^{3} + 16} = 1$$

$$\frac{35 \times^{3} - 4 \times^{3} + 8 \times^{3} + 16}{4 \times^{3} + 16} = 1$$

$$\frac{35 \times^{3} - 4 \times^{3} + 8 \times^{3} + 16}{4 \times^{3} + 16} = 1$$

$$\frac{35 \times^{3} - 4 \times^{3} + 8 \times^{3} + 16}{4 \times^{3} + 16} = 1$$

$$\frac{35 \times^{3} - 4 \times^{3} + 8 \times^{3} + 16}{4 \times^{3} + 16} = 1$$

$$\frac{35 \times^{3} - 4 \times^{3} + 16 \times^{3} + 16}{4 \times^{3} + 16} = 1$$

$$\frac{35 \times^{3} - 4 \times^{3} + 16 \times^{3} + 16}{4 \times^{3} + 16} = 1$$

$$\frac{35 \times^{3} - 4 \times^{3} + 16 \times^{3} + 16}{4 \times^{3} + 16} = 1$$

$$\frac{35 \times^{3} - 4 \times^{3} + 16 \times^{3} + 16}{4 \times^{3} + 16} = 1$$

$$\frac{35 \times^{3} - 4 \times^{3} + 16 \times^{3} + 16}{4 \times^{3} + 16} = 1$$

$$\frac{35 \times^{3} - 4 \times^{3} + 16 \times^{3} + 16}{4 \times^{3} + 16} = 1$$

$$\frac{35 \times^{3} - 4 \times^{3} + 16 \times^{3} + 16}{4 \times^{3} + 16} = 1$$

$$\frac{35 \times^{3} - 4 \times^{3} + 16}{4 \times^{3} + 16} = 1$$

$$\frac{35 \times^{3} - 4 \times^{3} + 16}{4 \times^{3} + 16} = 1$$

$$\frac{35 \times^{3} - 4 \times^{3} + 16}{4 \times^{3} + 16} = 1$$

$$\frac{35 \times^{3} - 4 \times^{3} + 16}{4 \times^{3} + 16} = 1$$

$$\frac{35 \times^{3} - 4 \times^{3} + 16}{4 \times^{3} + 16} = 1$$

$$\frac{35 \times^{3} - 4 \times^{3} + 16}{4 \times^{3} + 16} = 1$$

$$\frac{35 \times^{3} - 4 \times^{3} + 16}{4 \times^{3} + 16} = 1$$

$$\frac{35 \times^{3} - 4 \times^{3} + 16}{4 \times^{3} + 16} = 1$$

$$\frac{35 \times^{3} - 4 \times^{3} + 16}{4 \times^{3} + 16} = 1$$

$$\frac{35 \times^{3} - 4 \times^{3} + 16}{4 \times^{3} + 16} = 1$$

$$\frac{35 \times^{3} - 4 \times^{3} + 16}{4 \times^{3} + 16} = 1$$

3
$$(x+3)^{2} - y^{2} = 1$$
 $a=6$
 $b=4$
 $(3,4)$ center $(-3,0)$
 $y=mx+b$ $y=mx+b$
 $4=\frac{4}{5}(a)+b$ $y=\frac{4}{5}(a)+b$
 $4=\frac{4}{5}(a)+b$ $y=\frac{4}{5}(a)+b$
 $y=\frac{4}{5}(a)+b$ $y=\frac{4}{5}(a)+b$
 $y=\frac{4}{5}(a)+b$ $y=\frac{4}{5}(a)+b$
 $y=\frac{4}{5}(a)+b$ $y=\frac{4}{5}(a)+b$

The endpoints transverse axis (-2,0) asymptote
$$y=3x$$

(2,0)

(2,0)

(3,0)

(3,0)

(3,0)

(3,0)

(3,0)

(3,0)

(3,0)

(3,0)

(3,0)

(3,0)

(3,0)

(3,0)

(3,0)

10.5 min: lecture

(1) x3-13y-4x+30=0 [parabola]

only has an x3,

no y2

10.5 min: lecture

$$\frac{10.5 \text{ min. lecture}}{3 \times 2^{2} - 6 \times y + y^{2} - 8 = 0} \quad \theta = 45^{\circ}$$

$$\times = \times (0545 - y'5) \times 45 \quad y = \times 5 \times 45 + y'5 \times 45$$

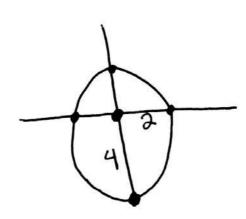
$$\times = \times (\cancel{9} - y'\cancel{9}) - 6 \times \cancel{9} - y'\cancel{9} \times \cancel{9} + y'\cancel{9} \times \cancel{9} + y'\cancel{9} \times \cancel{9} \times \cancel{$$

$$\frac{1y^{2}-3x=0}{2}$$

$$\frac{y^{2}-x}{4}=1$$

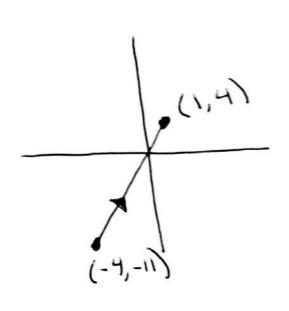

3 10.5 min: lecture

3 12
$$\chi^2$$
 - 6 $\sqrt{3}$ xy + 18 y² - 63 = 0 | cot $2\theta = \frac{A-C}{B}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$
 $X = x' \cos \frac{17}{C} - y' \cos \frac{17}{C}$


$$0 = \frac{4}{3-6500} \rightarrow 7 = \frac{\frac{4}{3}}{1-2500}$$

Scanned by CamScanner

10.6 mini lecture



$$e=\frac{1}{3}$$
 $ep=2$ $p=4$
 $e<1$ ellipse

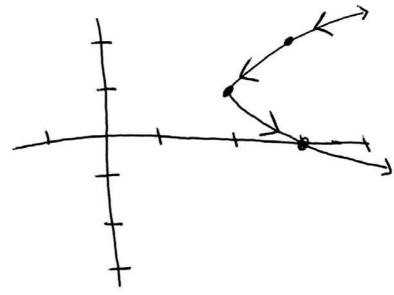
10.7 min: Lecture

t/x/y
-3 -4 -11
-2 \-3 \-8
-1 -2 -5
0 1-11-0
11914
7

$$(x+3)^2=(cost)^2$$

$$(x+3)^{2}+(4-3)^{2}=1$$

$$(x+3)=cost$$
 $(y-3)=sint$
 $(x+3)^2=(cost)^2$ $(y-3)^2=(sint)^2$


3
$$(6,-4)$$
, $(-2,1)$
 $X=(-2-6)t+6$
 $X=-8t+6$

$$x = (6 - (-2))t - 2$$
 $x = 8t - 2$

$$y = (-4 - 1)t + 1$$

 $y = -5t + 1$

$$4) X=t^{3}+3t+3$$

 $Y=-t$

(use cal whatur)

