	udent: ite:	Instructor: Joe Betters Course: Pre-Calculus Pre AP (Master Course)	Assignment: 9.4 Classwork Day 1
1.	The vector v has initial point P and terminal point Q. Write v in the form ai + bj ; that is, find its position vector.		
	P = (-3, -5); Q = (9, -9)		
	What is the position vector?		
	○ - 12i + 4j		•
	○ 4i – 12j	○ 12i – 4j	
	ID: 9.4.31		
2.	Find $\ \mathbf{v} - \mathbf{w}\ $, if $\mathbf{v} = -6\mathbf{i} + 2\mathbf{j}$ and $\mathbf{w} = -5\mathbf{i} + 6\mathbf{j}$.		
	v − w =		
	ID: 9.4.43		
3.	Find a vector v whose magnitude is 9 and whose component in the i direction is twice the component in the j direction.		
	One vector that satisfies the given conditions is $\mathbf{v} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$		
	ID: 9.4.53		
4.	Write the vector ${\bf v}$ in the form at + bj, given its magnitude is $\ {\bf v}\ $ = 10 and the angle it makes with the positive x-axis is $\alpha = 120^{\circ}$.		
	v =i +j (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)		
	ID: 9.4.61		
5.	Find the direction angle of v for the following vector.		
	v = -6i-4j		
	What is the direction angle of v?		
	(Round to one decimal place as i	needed.)	
	ID: 9.4.69		

6. A weight of 1600 pounds is suspended from two cables as shown in the figure. What is the tension in the two cables?

ID: 9.4.85

- 1. 12i 4j
- 2. $\sqrt{17}$
- 3. $\frac{18\sqrt{5}}{5}i + \frac{9\sqrt{5}}{5}$
- 4. -5

5√3

- 5. 213.7
- 6. 1415.3

1736.1

9.4 classwork day

$$\begin{array}{c}
0 & P = (-3, -5) \\
Q = (9, -9)
\end{array}$$

$$\begin{array}{l}
V = \langle x_{3} - x_{1}, y_{3} - y_{1} \rangle \\
= \langle q - (-3), -q - (-5) \rangle \\
= \langle 12, -4 \rangle \\
= \langle 12, -4 \rangle
\end{array}$$

9.4 classwork day I continued

3) vector magnitude of 9 and a=26

$$a = 2b$$
 $a = 2(\pm 9\sqrt{5})$
 $a = 2(\pm 9\sqrt{5})$

other auswers can work as well

9.4 classwork day I continued

(4)
$$||v|| = 10$$

$$d = 120^{\circ}$$

$$V = ||v|| (\cos \alpha i + \sin \alpha j)$$

$$= 10 (\cos 120 i + \sin 120 j)$$

$$= 10 (-\frac{1}{2} i + \frac{\sqrt{3}}{2} j)$$

$$= (-5 i + 5\sqrt{3} j)$$

9.4 classwork continued

Q3

9.4 classwork continued

$$(-.93971|F,11+.76601|F_311)i=0$$

$$F_{2} = 1415.3$$
 $F_{3} = 1736.1$