Student: Date:	Instructor: Joe Betters Course: Pre-Calculus Pre AP (Master Course)	Assignment: 8.2 Classwork Day 2

1. Solve the triangle.

A = ° (Round to the nearest degree as needed.)

b≈

(Do not round until the final answer. Then round to the nearest hundredth as needed.)

с≈

(Do not round until the final answer. Then round to the nearest hundredth as needed.)

ID: 8.2.11

2. Solve the following triangle.

$$\alpha = 130^{\circ}$$
, $\gamma = 20^{\circ}$, $c = 5$

 β = _____ ° (Round to the nearest degree as needed.)

 $a \approx$ _____ (Round to two decimal places as needed.)

 $b \approx$ (Round to two decimal places as needed.)

ID: 8.2.15

3. Solve the triangle.

$$A = 110^{\circ}$$
, $C = 40^{\circ}$, $c = 6$

Determine the value of B.

B= °

(Round to the nearest whole number as needed.)

Determine the value of a.

a =

(Round to two decimal places as needed.)

Determine the value of b.

b =

(Round to two decimal places as needed.)

ID: 8.2.21

Two sides and an angle are given below. Determine whether the given information results in one triangle, two triangles, or no triangle at all. Solve any triangle(s) that results. b = 9, c = 8, $B = 170^{\circ}$ Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. (Type an integer or decimal rounded to two decimal places as needed.) \bigcirc **A.** A single triangle is produced, where \bigcirc \bigcirc , \bigcirc , and O B. Two triangles are produced, where the triangle with the smaller angle C has $C_1 \approx$ _____ °, $A_1 \approx$ _____ °, and $a_1 \approx$ _____ , and the triangle with the larger angle C has $C_2 \approx$ ____ °, $A_2 \approx$ ____ °, and $a_2 \approx$ _____ . C. No triangles are produced. ID: 8.2.27 Two sides and an angle are given below. Determine whether the given information results in one triangle, two triangles, or no triangle at all. Solve any triangle(s) that results. a = 4. c = 5. $C = 120^{\circ}$ Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. (Type an integer or decimal rounded to two decimal places as needed.) \bigcirc **A.** A single triangle is produced, where A \approx ______, B \approx _____, and O B. Two triangles are produced, where the triangle with the smaller angle A has $A_1 \approx$ ______°, $B_1 \approx$ ______°, and $b_1 \approx$ ______, and the triangle with the larger angle A has $A_2 \approx$ ______°, $B_2 \approx$ ______°, and $b_2 \approx$ _____. O. No triangles are produced. ID: 8.2.35 6. Consult the figure. To find the length of the span of a proposed ski lift from A to B, a surveyor measures the angle DAB to be 25° and then walks off a distance of L = 1750 feet to C and measures the angle ACB to be 15°. What is the distance from A to B? The distance from A to B is approximately (Do not round until the final answer. Then round to two decimal places as needed.) ID: 8.2.39

7. A highway whose primary directions are north/south is being constructed along the west coast of a region. At one point, a bay obstructs the straight path of the road. Since the cost of a bridge is prohibitive, engineers decide to go around the bay. The figure shows a diagram of the path that they decide on and the measurements taken. If L = 3 mi, what is the length of highway needed to go around the bay?

The total length of the highway needed to go around the bay is about	miles.
(Do not round until the final answer. Then round to two decimal places as needed.)	

ID: 8.2.49

3.2 Classwork Day 2-Joe Betters						Page 4 of 4
1. 44						
19.88						
20.16				<u>. </u>		<u></u>
2. 30						
11.20						
7.31						
3. 30						
8.77						
4.67						
4. A. A single triangle is produced, where C \approx	8.88	, A≈	1.12	, and a ≈	1.01 .	
5. A. A single triangle is produced, where A \approx _	43.85	°, B≈	16.15	°, and b≈ _	1.61	
6. 2608.34						_

7. 4.00

8.2 ew 2ay 2

$$\frac{5.044}{15} = \frac{5.067}{b}$$
 $b = 19.88$

$$\frac{5.1444}{15} = \frac{5.1169}{C}$$
 $C = 20.16$

$$\frac{600}{9} = \frac{5! \times 30}{9} = \frac{11.20}{9}$$

$$\frac{5!N20}{5} = \frac{5!N30}{b}$$
 $b = 7.31$

8.2 cm 20y 2

$$\frac{8000}{9} = \frac{5000}{9} = \frac{5000}{9} = \frac{9.77}{9}$$

$$\frac{5.030}{b} = \frac{5.040}{6}$$
 $b = 4.67$

$$\frac{9}{8} = \frac{5!NC}{9} = \frac{5!N170}{9} = \frac{5!N80}{9}$$

$$\frac{5in1.13}{a} = \frac{5in170}{9} \left[a = 1.01 \right]$$

180 - 8.88 = 171.12

over 180°

only I A

$$\frac{8.2 \text{ cm day 2}}{5}$$
 $\frac{5!NA}{4} = \frac{5!N120}{5}$
 $A = 43.85^{\circ}$

$$\frac{5.1016.15}{b} = \frac{5.10120}{5}$$
 $\left[b = 1.61\right]$

8.2 cm day 2

$$180 - 25 = 155^{\circ}$$

$$180 - 155 - 15 = 10^{\circ}$$

$$\frac{5.0010}{1750} = \frac{5.015}{C} = \frac{5.08.34}{C}$$

8.2 day 2 cw

$$\frac{5.095}{3} = \frac{5.040}{8C}$$
 BC = 1.9357

$$\overline{BD} = 1.9357 - .125 = 1.81$$

$$\frac{5! \times 95}{3} = \frac{5! \times 45}{AC}$$
 AC = 2.13

$$\frac{5iN95}{ED} = \frac{5iN42.5}{8}$$
 ED= .18