Student: \_\_\_\_\_\_ Instructor: Joe Betters

Course: Pre-Calculus Pre AP (Master Assignment: 6.3 Classwork Day 1

Course)

- 1. If  $f(x) = \cos(x)$  and  $f(a) = \frac{1}{3}$ , find the exact value of the following.
  - (a) f(-a)
  - (b)  $f(a) + f(a + 2\pi) + f(a + 4\pi)$
  - (a) f(-a) = \_\_\_\_ (Type the value as a reduced fraction.)
  - (b)  $f(a) + f(a + 2\pi) + f(a + 4\pi) =$  \_\_\_\_\_ (Type the value as a reduced fraction.)



From a parking lot you want to walk to a house on the ocean. The house is located 3350 ft down a paved path that parallels the beach, which is 670 ft wide. Along the path, you can walk 350 ft/min, but on the beach you can only walk 130 ft/min. Calculate the time T if you walk directly from the parking lot to the house.

The time T to get from the parking lot to the beach-house can be expressed as a function of the angle  $\theta$  shown in the illustration and is equal to the following.

$$T(\theta) = \frac{67}{7} - \frac{67}{35 \tan \theta} + \frac{67}{13 \sin \theta}$$
  $0 < \theta < \frac{\pi}{2}$ 

You must calculate the time T if you walk directly from the parking lot to the house. Use the following hint.

Hint: 
$$\tan \theta = \frac{670}{3350}$$
.

T = \_\_\_\_\_ minutes (Type an integer or a fraction with a radical if needed.)

3. Show that the period of  $f(\theta) = \sin \theta$  is  $2\pi$ .

If  $f(\theta + p) = f(\theta)$  and p is the smallest such number then this smallest value is called the (fundamental) period of f. We will prove that the period of  $f(\theta) = \sin \theta$  is  $2\pi$  by contradiction. So, suppose that there is a number p other than  $2\pi$ , such that

$$f(\theta + p) = f(\theta)$$
, then  $0 < p(1)$  \_\_\_\_\_2 $\pi$ .

Thus,  $\sin (\theta + p) = \sin \theta$  for all  $\theta$ . Let  $\theta$  be 0.

$$\sin (\theta + p) = \sin \theta$$
  
 $\sin (0 + p) = \sin 0$  Substitute 0 for  $\theta$ .  
 $\sin (p) =$  Simplify.

For what value of p is the above equation true?

Now, substitute  $\frac{\pi}{2}$  for  $\theta$  and the value found above for p in the equation  $\sin(\theta + p) = \sin\theta$ . (Simplify your answer.)

$$\sin (\theta + p) = \sin \theta$$
  
 $\sin \left(\underline{\phantom{a}}\right) = \sin \frac{\pi}{2}$  Add inside the parentheses.

= 
$$\sin \frac{\pi}{2}$$
 Evaluate the expression on the left side.

Thus, the assumption of existence of a number p other than  $2\pi$ , such that  $f(\theta + p) = f(\theta)$  and 0 results into the above equation. Is this equation true?

- O No
- Yes

Does this prove that the period of  $f(\theta) = \sin \theta$  is  $2\pi$ ?

- $\bigcirc$  A. Yes because it is proved that it is not possible to have a period value such that 0 .
- O B. No, this proves that the period of  $f(\theta) = \sin \theta$  cannot be less that  $2\pi$ . However there is a possibility that it can be greater than  $2\pi$ .
- (1) () <
  - O >

1.  $\frac{1}{3}$ 

1

- 2.  $\frac{67}{13}\sqrt{26}$
- 3. (1) <

0

π

 $\frac{3\pi}{2}$ 

**-1** 

Νo

A. Yes because it is proved that it is not possible to have a period value such that 0 .

6.3 classwork day 1

① 
$$f(x) = cos(x)$$
  
 $f(a) = \frac{1}{3}$   
a)  $f(-a) = cos(-\frac{1}{3}) = \frac{1}{3}$   
 $*cos(-e) = cos(e)$ 

\* add 21 to get same bosut on deap

$$\frac{67}{7} - \frac{67}{35(\frac{1}{5})} + \frac{67}{13(\frac{1}{126})} = \sqrt{\frac{67\sqrt{26}}{13}}$$

3) show period of f(0)=sin0 is 2TT t(0+p)= t(0), then 0 < p < 2 7

Sin (0+p) = sin & for all 0.

\* Let 0 be 0

Sin (0+P) = SiNO

5in(0+p)= 5in 0

SINP=0 P=T

SINT = 0

\* SUD TYZ FOR O Sin (0+P) = 5in 0 5in (T/2+17) = 5in T/2 Sin 3T/2 = sin T/2

-1 = SINTY => SINTY = ] equation not true

(A) proved not possible to have a period value such that OKPKATT